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About the Centre for 
Trustworthy Technology

Our vision

Our vision is to empower all through the 
responsible integration and use of innovative 
and potentially disruptive technologies.

Our mission

Our mission is to guide organizations in 
understanding, preparing for, and leveraging 
transformative and trustworthy technologies, 
thereby promoting a future where technological 
innovation benefits all.

Our core values

Our core values include Collaboration, Global 
inclusivity, Human-Centered outcomes, Being 
Action-Oriented, Passionate and Committed to 
Learning & Educating.
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Foreword
“Neurotechnology” is one of those powerful words 
able to trigger sentiments of fear and hope at the 
same time, and to polarize opinions and attitudes, 
leaving no one indifferent. While the greatest hopes 
are generally associated with neurotechnology 
allowing disable people to e.g. see or walk (again), 
many applications do not specifically aim to address 
disabilities. Among them, technologies and devices 
that can make learning easier or faster, or help 
meditate, relax or interact in a different way, such as 
Brain-Computer Interfaces (BCI).

BCI belong to a part of neurotechnology I would 
define “omnibus”, as they are geared towards each 
and every one of us. The author makes a great job 
at getting readers acquainted with some of the key 
facets that BCI may take, without ever remaining too 
superficial nor becoming too technical. This “primer 
in BCI” paper fosters a better understanding of these 
fascinating developments, contributing to inform what 
has now become an urgent global multi-stakeholder 
conversation. 

Humanity needs to agree on the desirable features 
of neurotechnology, what we want these technologies 
to do for humanity. And this cannot be solely or 
predominantly a technology-centered conversation. 
That something is technically feasible does not imply 
that it should be done. I mean, all of us would be 
technically capable of jumping down from a tall tree, 
but shall we?

BCI can affect people’s identity, autonomy, privacy, 
sentiments, behaviors and overall wellbeing, among 
others, and it thus become imperative to decide 
especially what we do not want these technologies 
to do or look like, even more if that something hurts 
(some of) us. At the same time, we need countering 
the false narrative that holds ethical guardrails to 
curb or stiffen innovation, technological progress and 
economic growth and development - a narrative that 
has already caused non-negligeable mistakes and 
suffering in the past. 

Human rights, human dignity and fundamental 
freedoms have to be at the center of the 
development, deployment and use of BCI – and of 
any other neurotechnology for that matter, especially 
when coupled with Artificial Intelligence (AI) -, as they 

have the potential to shake the very foundations of 
what it means to be a human. “When you add AI, you 
are putting neurotechnology on steroids” I told the 
Financial Times in July, when launching UNESCO’s 
“Unveiling the Neurotechnology Landscape: Scientific 
Advancements, Innovations and Major Trends”, and I 
continue to firmly believe so.

Making BCI safe, secure and trustworthy, as 
said in the report, is indeed a step in the right 
direction, but in my mind, it is not enough. We need 
technologies that are ethical, and that are so by 
design, with the word ethical that means something 
very concrete: putting the human, all humans, at the 
center, also and especially those that societies leave 
at the margins and that suffer from inequalities and 
inequities. An example may help. BCI systems helping 
people learn faster, that respect the characteristics 
mentioned in the report, could indeed be considered 
safe, secure and trustworthy. However, if such 
devices are very costly, and therefore accessible to 
only a tiny part of the world population (the wealthy 
one), and if considerations related to e.g. accessibility 
are not taken into account, such BCI risk widening 
inequalities. They would be reinforcing the cognitive 
abilities of those that are already better off (as they 
have likely gone to better schools, belong to a part 
of society that enjoys greater opportunities, better 
health conditions, etc.), while putting others at further 
disadvantage. Would such BCI be safe, secure and 
trustworthy? Yes. Would they be ethical? No. 

UNESCO, being the institution in charge of social 
and human sciences and of the ethics of science and 
new technologies, has recently been tasked by its 
194 Member States to work at a Recommendation 
that would help define the ethical guardrails of 
neurotechnology. This follows the impressive 
support received in relation to the adoption and 
the implementation of our 2021 Recommendation 
on the Ethics of Artificial Intelligence and makes 
us confident that change for better is possible. 
The mandate we received is a testament to the 
importance of the issue, and mirrors the willingness 
of countries worldwide to have the important albeit 
difficult conversation about neurotechnology we need 
to have, as what is at stake is humanity herself.

Mariagrazia Squicciarini,
Chief Executive Officer,
Social and Human Sciences UNESCO
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As the scientific community deepens its 
understanding of neurological function, impressive 
strides in artificial intelligence (AI) enable researchers 
to surpass previous limitations in neural data analysis. 
The simultaneous advancement of the two disciplines 
is leading innovators to make breakthroughs in 
radical communication tools called brain-computer 
interfaces (BCIs). BCIs enable direct interoperability 
between the neural tissue in live human brains and 
digital platforms, potentially revolutionizing human 
experiences by transcending boundaries between 
physical and virtual experiences. While most use 
cases are presently focused on healthcare, this tool 
holds the potential to alter communication, education, 
and even prevailing social customs. 

BCIs comprise a suite of implantable and 
noninvasive biosensors to collect neural data, 
and software systems to interpret the data. Some 
BCI systems include closed feedback loops that 
initiate deep brain stimulation (DBS)i and other 
stimulation modalitiesii iii. Functionally, BCI devices 
enable paraplegics’ movement through prosthetic 
limbs,iv v vi allow patients with neurological disorders 
to communicate,vii viii and may inspire novel medical 
intervention for other neurological diseases, neuro-
recovery, and neurorehabilitationix x xi xii .

Successful BCI systems must effectively execute 
four tasks in the realm of biotechnology, AI, and data 
science:

1.	 First, biosensors must accurately record 
signals from the brain. These biosensors may 
be invasive, such as microelectrode arrays 
implanted in the brain,xiii or non-invasive, such 
as electroencephalography (EEG)xiv. The type 
of recorded signal is generally dependent on 
the invasive or non-invasive protocol. Invasive 
protocols will generally record more intricate 
data, including spikes from individual neurons 
or neuronal populationsxv. Meanwhile, EEG 
waveforms represent the synchronous activity 
of large populations of neurons in the cerebral 
cortex, forming brainwaves (alpha, theta, beta, 
etc.)xvi. The comprehensive understanding 
of these signals informs the processing and 
interpretation methodologies that follow.

2.	 Regardless of approach, biosensors collect 
considerable noise/interference and require 
filtering before data processing and analysisxvii. 
For example, artifact rejection procedures must 
filter out noise from eye blinking,xviii muscle 
contractions,xix xx cardiac activity,xxi xxii and other 
biological or non-biological recorded activitiesxxiii. 
These artifacts are more common for EEG 
sensors, which record electrical activity farther 
from cortical tissuexxiv. Filtering techniques 
may include elimination methodologies 
employing,xxv Independent Component Analysis 
of Classification (ICA),xxvi xxvii Support Vector 
Machines (SVM),xxviii Neural Network Regression 
(NNR),xxix Artifact Subspace Reconstruction 
(ASR),xxx and a variety of other algorithmsxxxi xxxii xxxiii.

3.	 The filtered data is processed and analyzed 
using AI models. This process may be called 
feature extraction or signal processing, and 
its techniques increasingly employ deep 
learning methods. These methods include 
Convolutional Neural Networks (CNNs),xxxiv xxxv 

xxxvi Recurrent Neural Networks (RNNs),xxxvii 

xxxviii autoencoders,xxxix xl Generative Adversarial 
Networks (GANs),xli xlii xliii xliv transfer learning 
models,xlv xlvi xlvii attention mechanisms,xlviii xlix l and 
hybrid modelsli lii that deploy a combination of 
these approaches.

4.	 Bidirectional BCI systems are designed to 
provide immediate feedback to the user, either 
through direct stimulation of the brain or through 
other sensory channels. These systems can be 
invasiveliii or non-invasive,liv lv and their actions 
can trigger prosthetic limb movements,lvi lvii 
control external deviceslviii lix, or modulate brain 
activity patterns to induce neural plasticitylx lxi.

This point-of-view paper offers foundational 
information on BCIs, including the technology’s 
origins, history, architecture, and applications. Based 
on this foundational understanding, the paper will 
also offer insight into the field’s challenges, both 
existing and anticipated, from technical and ethical 
perspectives. 

Introduction
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BCI Development from 
Inception to Modern Day

In the 2010 production Inception, Leonardo 
DiCaprio portrays a tech-savvy corporate spy 
who induces his targets into a dream state before 
extracting information directly from their mindslxii. 
The targets wore awkward-looking electrode-
woven caps that entranced them into brilliantly 
architected dreams, where every painstaking detail 
was intended to trick them into believing they were 
indeed in an alternative reality and not simply 
dreaming. When this movie aired, the modern-day 
understanding of BCIs was predominately science 
fiction perpetuated across late 20th-century 
cinematic work.

However, in the decade that followed, BCIs 
would become a cornerstone of national security 
interests for world leaders,lxiii lxiv inspire a fiery 
competition between notable startups,lxv  and even 
inspire a fascination with using the technology for 
spiritual enhancementlxvi. In September 2023, the 
United Nations Educational, Science, and Cultural 
Organization (UNESCO)’s International Bioethics 
Committee published a report to bring awareness to 
ethical challenges that arise from the use and storage 
of neural datalxvii. The report highlighted concerns 
over neurotechnology’s use in hindering mental 
integrity, privacy, and freedom. As these highly 
respected organizations bring awareness and shift 
their focus to neurotechnology, the industry enters 
a new era of global media coverage that warrants 
diligent discussion over its ethical development and 
adoption.

Despite recent traction in BCI research and 
products, the industry’s conceptualization started 
as a niche research field. The origins of the 
technology trace back to 1780 when Luigi Galvani 
discovered “biological electricity” by rotating 
generators to contract frog muscleslxviii. Around 
a century later, in 1875, Richard Caton observed 
recorded electrical potential changes corresponding 
with peripheral nerve activity and hypothesized 
that similar electrical principles occur in the brainlxix.
Using a Thomson reflecting galvanometer image 
projection, he captured visually evoked electrical 
potential from exposed cortical tissues in rabbits 
and monkeys. In 1924, German neuroscientist Hans 
Berger developed the first electroencephalogram 
(EEG) device for humans using an Edelmann string 
galvanometerlxx. The initial results from this project 
proved inconsistent, so Berger developed another 
EEG system with a more sensitive Siemens double-
coil galvanometer with low-impendence surface 
electrodes. Berger published his first paper on these 
findings in 1929, when he coined the long-surviving 
medical terms “alpha” and “beta” waves. Berger didn’t 
stop with non-invasive brain recordingslxxi .In 1930, he 
developed the first human-fitted electrocorticography 
(ECoG), where the patient underwent neurosurgery 
to have electrodes fitted on the brain tissue right 
underneath his scalplxxii. This paper would be the first 
of Berger’s twenty-three publications in BCI research.
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Figure 1 The Thompson Mirror Galvanometer, first conceptualized around 1880, improved the original mirror 
galvanometer, which used a mirror to deflect light and detect electrical currentlxxiii. 

Figure 2 The Edelmann String Galvanometer was conceptualized around 1901-1905. In 1905, it successfully 
recorded the human heart’s electrical activity, paving the way for electrocardiograms (ECGs)lxxiv.

https://books.google.co.in/books?id=2-sDAAAAQAAJ&pg=PA169&redir_esc=y%23v=onepage&q&f=false#v=onepage&q&f=false
https://ethw.org/Milestones:String_Galvanometer,_1901-1905
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Most BCI research in the later 20th century was spent building on Berger’s earlier work, confirming his 
findings, and fine-tuning his methodologies to develop tools that were later used for neurophysiology research 
or to support medical interventions. 

Like earlier in the century, BCI research breakthroughs were fueled by improvements to electrical 
current detection instruments. The conception of the first microelectrode arrays (MEAs) in the 1950slxxv 
led to C.A. Thomas Jr’s 1972 adoption of planar electrodes for recording the electrical activity of cultured 
cellslxxvi. In the 1970s, KD Wise et al. developed silicon-based MEAslxxvii and, in the early 2000s, invented 
thin film-like electrodes to record neuronal activity in living organismslxxviii. Unlike the electrical activity 
recording instruments in the first half of the 20th century, the instruments developed in the second half 
were increasingly bio-compatible, allowing researchers more flexibility and creativity in BCI systems 
design.

Following a consistent but stagnant volume of BCI research in the late 20th and early 21st centuries, 
BCI research and BCI-related patent filings grew exponentially starting in the early 2010slxxix. The marked 
increase in patent filings also corresponds with a noticeable move from predominantly academic BCI 
research to industry-driven development. The geography of these developments also shifted from Europe 
to North America and Asia. In the last two decades, the most prolific patent filing BCI research originated in 
the United States, with China and Korea following behind.

Figure 3 The number of patents filed for BCI-related research experienced significant growth after 
the early 2010slxxx. 

Figure 4 The United States takes a clear lead in BCI-related patent filings, accounting for around double the 
second most prolific patent filer, China. US - United States, CN - China, KR - South Korea, JP - Japan, EP - 
Europe, FR - France, DE - Germany, GB - United Kingdom, AU - Australia, TW - Taiwanlxxxi.

Several prominent BCI startups, from Neuralink to Synchron, were founded in the late 2010s. Their research 
attracted more popularity in the early 2020s as they moved their first BCI products to initial clinical trialslxxxii. 
Improvements in bioelectrical activity recordings, such as the development of high-density MEAs,lxxxiii 
contributed to the field’s growth. However, rapid advancements in other disciplines, including the maturation 
of increasingly powerful computing hardware, data science, AI, and biomaterials has driven BCI research 
to achieve an unprecedented level of publication after the 2010s. The next section of this paper will delve 
into the systems design principles that may inform how these disciplines should converge and the recent 
breakthroughs that are shaping the architecture of contemporary BCIs.

https://www.nature.com/articles/s41587-021-01071-7/figures/1
https://www.nature.com/articles/s41587-021-01071-7/figures/2
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BCI Architecture: From 
Hardware to Data Analysis
Systems Design Principles 
The full complexity and scope of BCIs are 
best understood through the technology’s 
methodologies and the opportunities that arise from 
its proper development. The process of designing, 
developing, and deploying successful BCI systems 
is primarily focused on the following key principles: 

	» Safety: Above all else, biomedical technologies 
must be safe for human users. While safety 
standards and definitions may differ across 
national regulators or medical groups, the basic 
understanding of medical safety is avoiding 
patient harm. According to the United States 
Agency for Healthcare Research and Quality, 
safety is “avoiding harm to patients from the care 
intended to help them”lxxxiv. Given this context, 
BCI safety considerations are generally a more 
prevalent concern for implantable devices and 
stimulators, which carry a risk of injury, both from 
the design of specific devices and the brain’s 
natural reactions to foreign objectslxxxv lxxxvi. The 
risk of injury should be weighed against patient 
needs and the likelihood of recovery. These 
safety practices are also a cause for limiting 
early BCI research, particularly in invasive forms, 
to strictly medical applications. It is important 
to note that while virtually all researchers and 
regulators agree that safety is the most important 
principle, the prioritization of the following 
principles can be fiercely debated. Moreover, 
the diversity of perspectives often leads to 
differences in BCI system designs. 

	» Resolution: BCI biosensor efficacy is 
fundamentally measured through spatial and 
temporal resolution. Spatial resolution describes 
the ability of sensors to detect intricate details 
regarding the locality of the signals’ origination. 
Temporal resolution characterizes the sensors’ 
ability to capture time-variant data. Generally, 
non-invasive EEG systems have higher temporal 
resolution but lower spatial resolution. Invasive 
ECoG systems have both high temporal 
resolution and high spatial resolution compared 
to EEG. 

	» Effective Feature Extraction: The raw neural data 
collected from BCI sensors must be interpreted 
as relevant information for the end user. The 

first step in extracting relevant information is to 
preprocess the signal data by removing artifacts 
and noise, enhancing the signal-to-noise ratios. 
Once the data is filtered, researchers extract 
domain-specific features, such as event-related 
brain activity (e.g., changes in brainwave 
frequencies or amplitudes) in response to time-
sensitive events or stimuli. 

	» Data Model Selection for Interpretation Accuracy: 
Appropriate model selection is critical for 
accurately interpreting the extracted features. 
When considering data models for specific BCI 
systems, developers must gauge the signal 
characteristics (such as the signal-to-noise ratio 
or stationarity) most critical to their specific 
objectives, as well as model interpretability, 
complexity, adaptability, robustness, and 
computational efficiency. 

	» Longevity: All components in the system 
architecture, especially hardware, should be 
relatively durable and appropriate for long-term 
use. For example, MEA-based brain implants 
should last at least a few years to minimize the 
frequency (and, thus, risks) of surgery. 

	» User-Centric Design: Both invasive and non-
invasive modalities should prioritize comfort 
and ease of use for the end user. In consumer 
markets, BCI devices should not require medical 
knowledge to operate and should be attractive 
for frequent use. 

Hardware: Capabilities & 
Limitations
Researchers and engineers will choose specific 
modalities based on their characteristics and how 
they align with the unique project requirements and 
intentions. Generally, BCI sensors are categorized 
into the following modalities: 

Electroencephalography (EEG): The most 
popular BCI hardware, EEG systems are entirely 
noninvasive and are offered in various contexts, 
such as caps, headbands, flexible film, etc. The 
electrodes are placed on an individual’s head and 
used to measure the electrical potentials generated 
in the brain via a conducive gel.
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EEG systems offer high temporal resolution, with 
the most advanced devices sensing electrical 
activity in milliseconds, but their spatial resolution is 
low relative to more invasive techniques. Therefore, 
EEG signals are typically frequency bands that 
measure synchronized waveforms such as delta 
(0.5-4Hz), theta (4-8 Hz), alpha (8-13 Hz), beta 
(13-30 Hz), and gamma (30+ Hz). Because EEG 
devices are comparatively more accessible than 
invasive BCIs, they have been applied to various 
uses, including neurorehabilitation, communication, 
guided meditation, and environmental controllxxxvii.

Figure 5 The electrodes placed on top of the man’s 
head record brain activity as brainwaves, which 
characterize EEG readingslxxxviii.

	» Meditation & Consumer Markets: Several 
meditation companies are developing consumer 
EEG devices to track brainwaves and offer users 
feedback on their wakefulness or meditative 
states. In some cases, the feedback is meant to 
guide users to their desired mental state, aid with 
lessening anxiety, improve sleep and generally 
improve mental health. The mass manufacturing 
and subsequent commercialization of these 
products, coupled with their relative ease of use, 
is an example of successful BCI marketing in 
consumer marketslxxxix.

	» Electrocorticography (ECoG): Also known as 
intracranial EEG (iEEG), ECoG devices are 
implanted under the skull and on top of the 
exposed surface of the brain. The surgical 
procedure involves removing a part of the skull 
to expose the surface of the brain’s cortex. 

The electrodes are placed on brain tissue 
underneath. Because ECoG devices are closer 
in proximity to neuronal activity and the skull 
doesn’t run interference with the electrodes, 
ECoG systems likely exhibit higher spatial 
resolution than EEG devices.xc xci

Figure 6 ECoG electrodes, often MEAs, are placed 
underneath the skull but on the cortical tissue. 
Because these electrodes are closer to the neuronal 
activity within critical tissue, they often present better 
spatial resolution than non-invasive BCI systemsxcii.

	» Intracranial Devices: Unlike ECoG devices, 
which record from the surface of brain tissue, 
intracranial devices are implanted in brain tissue, 
such as the cortex and other brain structuresxciii. 
Intracranial devices are generally intracortical 
devices, such as MEAs implanted into the 
cortex to record neuron-level activity or depth 
electrodes implanted in the hippocampus or 
amygdala to capture local field potentials (LFPs)
xciv. Because intracranial devices are closer in 
proximity to neuronal activity than ECoG or EEG 
devices, they will generally offer higher spatial 
and temporal resolution.

Figure 7 Intracranial devices, or intraparenchymal 
devices, are the most invasive BCI devices as they 
are implanted directly inside the brain tissuexcv.

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/
https://www.sciencedirect.com/science/article/abs/pii/S2352492821008412
https://learn.neurotechedu.com/introtobci/
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Some neuroimaging devices qualify as BCIs 
because they allow researchers to visualize neural 
structures on electronic systems. However, these 
devices are typically restricted to neuroimaging 
use in diagnostics and fail to offer the same 
communication-based functionalities as the other 
methods mentioned previously.

These devices include: 

	» Functional Magnetic Resonance Imaging (fMRI): 
fMRI is a non-invasive neuroimaging technique 
that leverages magnetic fields and radio waves 
to detect changes in blood oxygenation and 
flow (the blood-oxygen-level-dependent (BOLD) 
contrast)ci. fMRIs have high spatial resolution 
but low temporal resolution. Clinically, these 
devices often aid in studying structural brain 
abnormalities or serve as presurgical mapping 
toolscii. 

	» Functional Near-infrared Imaging (fNIR): fNIRs 
leverage the absorption of near-infrared light 
by hemoglobin (HbO) and deoxygenation 

hemoglobin (HbR) to detect changes in brain 
activity. Light sources and detectors are placed 
on the scalp, and neural activity is measured 
through hemodynamic responsesciii. The spatial 
resolutions of fNIRS systems are lower than 
those of fMRI systems but higher than those 
of EEG. It is important to note that fNIRs are 
typically only applied to cortical activity, as 
near-infrared light cannot penetrate deeper brain 
tissuesciv.

	» Positron Emission Tomography (PET): PET scans 
adopt radioactive tracers to track metabolic 
processes in the brain. Specific chemical tracers 
detect neurotransmitters relevant to pathological 
processes like amyloid plaques, which are critical 
in studying Alzheimer’s diseasecv. Spatial and 
temporal resolution is limited to tracer kinetics, 
but PET scans are effective and widely used to 
diagnose and monitor neurological diseases.

BrainGate: BrainGate, once the world’s most sophisticated BCI system, was based on an intracranial 
device that allowed a quadriplegic woman to serve herself coffeexcviii. The BrainGate project, which was 
initiated in the early 2000s, was considered groundbreaking when its 2012 study was credited with 
demonstrating the effectiveness of using MEA to decode and generate signals to external (in this case, 
robotic) systems.

Neuralink: The company’s 2019 whitepaper describes the implantable device as an intracranial 
compilation of 96 flexible electrode “threads” that contained around 3,072 electrodes per arrayxcix. 
The Neuralink chip currently undergoing human clinical trials comprises 64 polymer threads with 1,024 
electrodesc. Neuralink has consistently conveyed its mission to aid patients with paralysis and other 
neurological disabilities.

	» Magnetoencephalography (MEG): Like EEG, MEG is non-invasive. However, unlike EEG, MEG devices 
measure the magnetic fields generated by the brain’s electrical activity instead of the electric activity 
itself. These devices use superconducting quantum interference devices (SQUIDs) to detect the brain’s 
magnetic fields. Studies suggest that MEG devices have excellent temporal resolution and may offer 
better spatial resolutions than EEGxcvi. Clinically, MEG can diagnose neurological disorders, and it is 
frequently used in sensory processing, cognitive function analysis, and measuring brain connectivityxcvii.
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AI Models of Neural Data 
Interpretation
BCI signal processing began as a manual human 
task until machine learning techniques allowed the 
automated procedure of separating usable signals 
from noise. However, most of these algorithms 
could only extract the data features necessary 
for a particular task and require a supervised 
learning approach to classify and identify patterns 
within the datasetcvi. There are two drawbacks to 
this approach. First, supervised learning methods 
require a testing and training dataset, where the 
training data informs patterns acquired from the 
testing set. However, an individual’s brain may not 
act consistently for a long enough time horizon to 
detect usable patternscvii. Moreover, each human 
brain is unique, so each algorithm needs to be 
re-trained on new subjects or incorrectly assume 
that the features extracted from one individual are 
transferable to anothercviii.

As a result, researchers adopted deep learning 
techniques that could allow models to learn from 

and adapt to complex datasets. These techniques 
may be founded on similar supervised learning 
principles but possess the unique ability to extract 
data features and identify patterns simultaneously.

These deep learning models include:

	» Convolutional Neural Networks (CNNs): Arguably 
one of the most popular deep learning methods 
for neural data interpretation, CNNs may analyze 
complex, high-dimensional data and are relevant 
in signal preprocessing, data representation, 
feature learning, and classificationcix cx. For 
example, CNNs can decode imagined speech 
from EEG signals, cxi cxii classify motor imagery 
tasks for controlling prosthetic limbs,cxiii cxiv 

and predict the onset of seizures in epileptic 
patients,cxv among other applications.

	» Recurrent Neural Networks (RNNs): RNNs are 
uniquely designed to handle sequential data with 
temporal dependencies, making them ideal for 
content-dependent neural data interpretationscxvi 

cxvii. RNNs are also adept at handling variable 
data and are adaptable models that can learn 
from user brain activitycxviii.
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Future Development 
Despite the recent improvements to BCI 
hardware and software systems, the industry 
has yet to experience significant scientific or 
technological breakthroughs that transcend 
the existing limitations and trade-offs between 
resolution, durability, and safety. Accelerating BCI 
research requires consequential advancements 
in microbiology, electrical engineering, signal 
processing, data science, and AI. For example, 
the pivotal technologies on the horizon that may 
materially advance. 

BCI research include but are not limited to:

Biomimetics: Biomimetics is the study and application 
of biology to design bio-compatible and bio-
equivalent materials. Advanced biomimetic fibers 
could enable high-density, minimally invasive, and 
long-lasting electrode arrayscxix. One of the greatest 
limitations to existing BCI implants is the body’s 
immune response to protect itself from foreign 
objects and develop scar tissuecxx. Over time, the 
scar tissue dampens signals from the implantcxxi. 
Biomimetic coatings on implantable devices can 
promote better attachment and integration within and 
on neural tissuecxxii.

	» Biomimetics for Microelectrode Arrays: 
Many invasive BCI implants use synthetic MEAs 
with metallic electrode surfaces deposited on 
glass, silicon, or other substratescxxiii. However, 
these materials are known to cause glial-
formed scar tissue, reducing the efficacy of the 
implants’ electrophysiological properties and 
dampening signals over time. In 2023, Nowduri 
et al. developed a novel nano-structuring method 
inspired by the organizational structure of natural 
collagen fibers. When the substrate on the 
metallic microelectrode surfaces resembled the 
fibers, there was decreased scar tissue formation 
and improved spike (neuronal activity) detection, 
leading to a 22-41% reduction in impedance 
magnitudecxxiv.

Li-Fi Wireless Transmission: Integrating high-
bandwidth, low-latency wireless standards could 
enable faster and more efficient transmission, 
improving temporal resolution. Light Fidelity 
(Li-Fi) or transmission through infrared LED 
enables low latency as it has a shorter signal path 
than RF technologies and does not suffer from 
electromagnetic interference. Li-Fi may also be more 
secure than other wireless standards, like the 5G or 
Bluetooth protocols currently prominent in industrycxxv. 
However, there is a gap in the academic literature 
on Li-Fi use in BCI, and further research needs to 

address several theoretical limitations. For example, 
Li-Fi ranges are confined to a few meters, making 
long-range BCI use difficult. A rare study employing 
Li-Fi use in transmitting EEG signals achieved data 
transmissions of less than 20 inchescxxvi. Moreover, 
while light use on cortical tissue has been studied 
through optogenetics and other fluorescent imaging, 
Li-Fi’s light penetration depth on cortical tissue 
has been scarcely studied. It is important to note 
that while this research area may warrant further 
exploration, the current literature insufficiently 
supports the feasibility or practicality of Li-Fi use in 
BCI development.

Novel Deep Learning Networks, “Few-shot and 
zero-shot learning”: Few-shot and zero-shot learning 
models only require a small sample size of data 
points, enabling quicker adaptation to new users or 
tasks. These methods could decrease the sample 
size and, thus, the time required for individuals’ neural 
data to learn their unique signal compositions and 
tailor the interpretations based on a smaller training 
setcxxvii.

Novel Deep Learning Network, Neuromorphic 
Computation: Neuromorphic systems are designed 
to be highly energy-efficient and emulate the 
capabilities of biological neural connections, which 
include high adaptability, parallel processing, and 
noise resilience. These networks are designed to 
mimic biological systems, which may theoretically 
indicate improved compatibility with natural neural 
signaling systemscxxviii.
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Trustworthy Perspective: 
BCI Impact & Ethics 
Optimistically, BCI research will continue accelerating as multidisciplinary perspectives collaborate to 
optimize interoperability between biological and computer systems. Therefore, the existing BCI systems 
operating in 2024 will likely drastically differ from their future form and functionality, which will depend on 
forthcoming engineering. The future of this industry and how it shapes society rests on a commitment to 
building trustworthy BCI systems and ecosystems in which these technologies operate. 

Identifying Appropriate Use Amidst High Growth & 
Promising Commercialization
While “appropriate use” of BCIs may not be, and perhaps should not be, restricted to medical use, it should 
be limited to trustworthy use. The trustworthy use of BCI systems in communication, entertainment, and 
other activities unrelated to medical assistance should be explored and encouraged. However, a few 
guided principles to determine the qualifications of trustworthy use are necessary to discourage BCI usage 
for malicious intent. For example, 

	» The BCI system should be safe for the user and others. Fundamentally, BCI systems should not be 
leveraged by a single user (or a group of users) for the malicious intent of harming another person (or 
group of persons). Referring back to the cinematic piece Inception mentioned earlier in the paper, BCI 
systems should not be purposefully leveraged to manipulate or cause distress to another person.

	» The long-term benefits of using the BCI system should exceed the economic costs of acquiring and 
implementing the system. When BCI systems are leveraged with positive intent, they should be done so 
only when they resolve or lessen the burden of a problem that cheaper solutions cannot solve.
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Challenges Arising from Appropriate Use
The appropriate use of BCI systems still raise technical, ethical, and trustworthy challenges, including: 

Wireless Attacks, Neural Hacking, and Neural Ransomware: Most BCI devices are wireless, making them 
susceptible to eavesdropping, jamming, and data injection attacks. As with any computer system, BCIs are 
at risk for traditional computer security threats like malwarecxxix. Many BCI ecosystems may rely on cloud 
serverscxxx and other large data storage infrastructure with inconsistent security.

Privacy and Security: As neurotechnology grows in sophistication, feature extraction techniques could 
enable the detection of increasingly private data. Given the highly personal and private nature of neural 
data, both in its raw form and when interpreted as biometric data, data privacy and security management 
are critical concernscxxxi. Most BCI protocols use traditional encryption methods familiar to most health 
information systems, but these security interventions may not be sufficientcxxxii.

Unintended Disclosure and Difficulty in Anonymizing Neural Data: Because researchers cannot selectively 
dispose of non-pertinent information, private information (and even thoughts or, at the very least, mental 
state) may be accidentally stored without the user’s prior consent. Neural activity is like a “fingerprint” that 
could be uniquely attributed to individualscxxxiii. While this would require a herculean effort manually, the 
rise of AI models could supersede the process, leading to concerns regarding the misuse of private and 
identifiable neural data.

Transparency, Consent, and Autonomy: Transparent safety disclosure to all BCI users, whether referring 
to the patient or their doctor, is critical to maintaining the integrity of BCIs’ use. In other words, BCI 
designers, developers, and manufacturers should be held to the highest standard of disclosure to ensure 
unambiguous user consent and autonomy. Therefore, BCI systems should be designed with a systems 
architecture that allows for the transparent disclosure of medical risks and biometrics data handling. 

	» The Leggett Case: The autonomy to choose if or when to discontinue the use of BCI systems should be 
granted to users, but legal and business obstacles may complicate the exercise of this right. Rita Leggett 
was an Australian woman struggling with epilepsy before she was fitted with a brain implant that predicts 
forthcoming with seizures. Leggett said that the device changed her life and she felt that she “became 
one” with her implant. Devastatingly, the implant was forcibly removed from her when the company 
that developed the device, NeuroVista, went bankrupt in 2013cxxxiv. These crushing cases may become 
more prevalent in the future. These cases, which are arguably human rights issues, will warrant the 
development and implementation of active policies and frameworks to address these concerns.

Inclusivity & Accessibility: Like most biomedical innovations, BCI systems are expensive, and early iterations 
of high-quality BCIs will likely be inaccessiblecxxxv cxxxvi. Nonetheless, innovators should consider inclusivity 
and costs as the research matures to allow the technology to become more ubiquitous.
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Building Trust through 
Principled & Solutions-
Based Research and 
Engineering

The trust built between end-users and researchers 
must translate to engineering for BCI systems 
to genuinely reflect user values and principles. 
Engineering solutions, in addition to policy and 
business prudence, may resolve many of the ethical 
challenges pertinent to BCI development. 

Enhancing end-user engagement throughout 
the research and development process represents 
an unconventional yet markedly more effective 
approach to building enduring trust. Involving end 
users in R&D would allow users to gain a more 
intimate understanding of the goals, methods, 
and potential risks of medical devices, including 
BCIscxxxvii cxxxviii. Moreover, conducting research 
outside of traditional lab settings, such as homes, 
workplaces, and community spaces, may offer 
researchers valuable insights regarding how their 
work performs in real life. Collaborative research 
models, such as participatory design or citizen 
science initiatives, can also empower end users 

to contribute actively to the research processcxxxix. 
Ultimately, by prioritizing trust and engaging with 
end users beyond the confines of a lab, researchers 
can build better systems that are both scientifically 
rigorous and socially responsible for the end user.

Emerging engineering solutions, such as Li-Fi 
mentioned earlier in the paper, or other wireless 
data transmission protocols such as Quantum Key 
Distribution (QKD) could theoretically become more 
secure. than Bluetooth or 5Gcxl cxli cxlii. However, it is 
important to note that the security of any wireless 
communication technology depends on various 
factors including, but not limited to, implementation 
and configurationcxliii. These wireless transmission 
protocols have yet to be seriously explored in 
existing literature and studies, but their promise 
could make them worthwhile research endeavors 
in the future. By employing more secure wireless 
data transmission protocols, BCIs could decrease 
the likelihood of neuro-hacking and protect 
against neuro-ransomware. Moreover, computer 
engineering solutions such as Zero-knowledge 
proofs (ZKP) or other advanced encryption methods 
could allow for the computation of specific datasets 
without storing these setscxliv. These methods could 
make it possible for neural technologies to compute 
a subset of data for computation and storage (such 
as drug history and other health information) while 
discarding another subset after computation.
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Policy Framework 
Considerations 
Beyond trustworthy principled engineering, 
BCI systems should adhere to robust and 
comprehensive policy frameworks that guide their 
technical maturation and execution. The uncertainty 
surrounding BCIs’ future technical design brings 
unique challenges and opportunities. On one hand, 

the nascency of the field allows policymakers an 
opportunity to be proactive in guiding the field’s 
north star, both in engineering and business. 
Concurrently, the industry’s infancy poses a 
challenge for policymakers, as they struggle to 
comprehend the potential risks and ramifications 
in the field. This lack of understanding makes it 
arduous to determine whether policies are essential 
for safeguarding the public interest or if they would 
unnecessarily hinder innovation. Subsequent 
papers in this POV series will explore the specific 
policy considerations to guide this discussion.

Conclusion
The significant strides in BCI research offer 
a glimpse into a future where individuals may 
discover novel interactions with the physical 
and digital environment. BCIs are expected to 
become more sophisticated, reliable, and user-
friendly, given a sustained effort to advance 
research and development. While there are still 

technical and ethical challenges to overcome, the 
collaborative efforts of researchers, engineers, 
industry leaders, policymakers, and end-users 
will lead to responsible and committed efforts to 
building trustworthy BCI systems. This publication 
is the first of six POV papers exploring the upside 
potential, technology, challenges, ethics, and 
applications of BCI neurotechnology.
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